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ABSTRACT

The influence on rolling contact fatigue behavior of
thermomechanical processing (TMP) to refine grain and
soluble carbide size was studied in this work on VIM-VAR
M-50 steel. Material was processed (austenitized and warm-
rolled) following the procedures developed by Larson, with
subsequent austenitization times and temperatures (for final
hardening) based on Bres' data. Rolling contact fatigue
testing indicates virtual equivalence of the as-received
(spheroidize-annealed) and TMP specimens evaluated, with the
TMP material clearly no better than the as-received condi-
tion in terms of fatigue 1ife. This is believed to be the
result of one or both of the following: (a) austenitization
(hardening) of TMP material at too long a holding time, with
a microstructural equalization occurring between conditions;
and (b) voids existing at the ends of the insoluble carbides
in both as-received and TMP material, which act as possible

sites for crack initiation in the matrix.
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I. INTRODUCTION

Possible improvements in the capabilities of engine main
bearing materials continue to motivate research on steels
for application in gas turbines. Engines are now expected
to operate in severe environments at higher temperatures
and with increased turbine speeds for enhanced performance,
as well as with multi-spool configurations for greater
efficiency [Ref. 1]. Advances in blading technology include
the use of exotic alloying additions and protective oxide
coatings, and this aforementioned combination of "hotter,
faster, and heavier' places a concomitant burden on bearing
metallurgists.

When one speaks of main engine bearing performance, the
practical consideration is one of bearing life. This is,
for all intents and purposes, the lifespan until failure by
fatigue spalling, which is the classical failure mode for
rolling-element bearings [Ref. 2]. The foregoing assumes,

. of course, that the bearing was properly handled, installed,

and maintained; that it has been correctly lubricated

Coan 208 Jan oun e 2

throughout its lifetime; and that it was not subjected to

Ly

® abuse by either the elements or unqualified operators [Ref.

3]. Thus, the primary objective is to increase the fatigue

R R ——y

life of the bearing material, and specifically its life in

@ terms of rolling contact fatigue.
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One approach, developed by Larson [Ref. 4] for M-30
steel, is thermomechanical processing (TMP), a two-step
technique aimed at producing a microstructural enhancement
which may lead to an increase in rolling-element life.
Briefly, the TMP consists of a high-temperature austenitiza-
tion to dissolve soluble carbides, followed by air-cooling,
which results in a fine, supersaturated martensitic matrix
with newly-precipitated (and refined) soluble carbides.
Secondly, the material is reheated and warm-rolled at 0.5 to
0.65 of its absolute melting temperature to induce recrys-
tallization without allowing for excessive grain growth,
thereby yielding a refined ferrite grain size.

According to fracture mechanics theory, this will give
the material improved fracture toughness. The refinement of
the ferrite grains enhances fracture resistance by two
means: (a) pre-existing cracks in the matrix will be smaller
(due to the smaller grain size), and will require a higher
external stress for propagation to occur; and (b) there will
be increased grain boundary area in the refined structure,
meaning more obstacles in the path of a propagating crack
[Ref. 1]. Carbide refinement provides two beneficial effects
as well: (a) smaller carbides are not as effective as stress
raisers in the matrix as are massive carbides, and are less
likely to become sites for crack initiation; and (b) a fine
dispersion of carbides as a classical strengthening
mechanism. These homogeneously-distributed carbides ''pin”

12
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grain boundaries, thus inhibiting grain growth, and also
result in secondary hardness via precipitation-hardening
during tempering following the final heat treatment.

It must be noted, however, that although the microstruc-
tural refinement should result in an improvement of fracture
toughness, this is not necessarily synonymous with an
enhancement of rolling contact fatigue resistance. This
caveat 1is particularly germane when the associated failure

mechanism (e.g., fatigue spalling) is not as well under-

AN 0 Sk e et W A Acenil G- dal- T i Sl AR i B N T T T T ——r—~—

stood,

validate our assumptions with

which is the case here.

Hence, the need exists to

this type of mechanical
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testing.
The material used in this research, AISI M-530 steel, is

the aircraft industry's alloy éf choice. It is presently
specified by virtually all major U.S. gas turbine engine
manufacturers for use as their main shaft bearings material
[Ref. 3]. Although tool steels account for less than two
tenths of one percent of total steel tonnage produced per
annum in the United States, their value per pound is about

fifty times that of the high-tonnage steels [Ref. 5]. The
explanation for this is found in both their heavy degree of
alloying, and their specialty applications. Tool steels such
as M-50 are especially appropriate for gas turbine bearing

usage due to their excellent resistance, not only to wear

(for economical l1ife) and to deformation or breaking under

13
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high loading conditions, but also to softening at elevated

temperatures.

This latter feature, incidently, is the reason why AISI
52100 steel, long a bearing industry standard material,
cannot be used in a gas turbine engine; it will soften in
situ at the normal operating temperatures of the engine,
threatening a premature failure of the load-bearing
component.

The nominal composition (in weight percent) of M-50
steel 1s given as follows:

C Mn Si Cr Mo \'%

An extensive discussion is devoted to the carbides present

in M-50 by Bridge, et ﬁl. [Ref. 6]. A brief summary of their
relevant.findings is reported below under the Results and
Discussion chapter. The principal alloying elements in M-50
are chromium, molybdenum, and vanadium. Chromium is a rela-
tively low-cost addition which increases the hardenability

of the alloy, and also results in the formation of the

soluble carbide Cr which provides good wear resistance.

23C6’
"M" type (high speed) tool steels are so desighated because
of their high molybdenum content; a hard carbide, MOGC’ is
b' produced which, upon tempering, precipitates as fine parti-
cles in the martensite and forms the basis for secondary
hardening. Vanadium is an expensive element which forms the

hard, insoluble carbide VC, an extremely tenacious particle
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which also contributes to the excellent wear resistance of

the alloy [Refs. 5 and 7].

The material is subjected to VIM-VAR processing.

That

is, it is vacuum induction melted (VIM) in an induction

furnace in which the crucible, heating coil, and ingot mold

are enclosed
arc remelted
vacuum or an
high-quality

porosity and

T LI T T BT S S B
PR P AP P R L SaP Y ) PP SN - R A I

in a vacuum chamber. The steel is then vacuum
(VAR) in a consumable electrode furnace under a
inert gas. This steelmaking process ensures a
product containing only minimal amounts of gas

nonmetallic inclusions [Ref. 8].
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IT. EXPERIMENTAL PROCEDURE

A. DPREPARATION AND INITIAL AUSTENITIZATION

Two approximately six-inch lengths of steel were cut
from the 1.75 inch (4.5 cm) diameter M-50 round stock. This
"as-received'" material was left in a spheroidize-annealed
condition by the manufacturer. To commence thermomechanical
processing and back the material out of its as-received
condition, initial austenitization was accomplished in a
high-temperature electrical box furnace (silicon carbide
heating elements) following the procedures developed by
Larson [Ref. 4]. The steel was pre-heated at 850°C
(1562°F) for two hours, and then austenitized at 1150°C
(2102°F), also for two hours. This was followed by a
stabilizing quench in a furnace at 620°C (1148°F) for two to
three minutes, until the glow had disappeared. Then, the
specimens were allowed to air-cool to ambient temperature
[Ref. 9]. Throughout the austenitization, each length was
individually wrapped in nickel foil to prevent decarburiza-

tion, with titanium sponge added as a deoxidant.

B. WARM-ROLLING
The lengths of austenitized M-50 steel were taken to the

Lawrence berkeley Laboratories, Berkeley, California, for

warm-rolling. After heating to 700°C (1292°F) in an

16

2 A, N VLI NS L W GO N

Rt e A SR BT e Rl i ittt R TR Bt R R S s e




|
- A Fd
® T

1
»

T, Yy,

Ev i z
. PR

electrically-fired box furnace, the specimens were rolled

in a two-high flat mill, with intermediate reheating to
700°C between each pass, to a rough shape about one inch
(2.5 cm) square. Then, the lengths of M-50 were rolled in a
two-high bar mill, again with reheating between passes, to a
rounded-corner square shape of 0.625 inch (1.6 cm) per side.
This same procedure was followed for two additional
lengths of spheroidize-annealed M-50 steel, with the excep-
tion that warm-rolling was accomplished at a temperature of

750°C (1382°F).

C. PREPARATION FOR ROLLING CONTACT FATIGUE TESTING

Rolling contact fatigue rods were machined from the two
warm-rolled conditions (700 and 750°C) and the as-received
stock. Each rod was cylindrical in shape, 0.375 inch
(9.5 mm) in diameter and about four inches long. It is
noted that the warm-rolled material was slightly easier to
machine, in that it offered less resistance to the lathe
operator and produced a smoother surface.

The preferred method for austenitization of steels is to
heat treat in molten salt baths, as this results in rapid,
uniform heating and minimizes undesirable decarburization.
Since the Naval Postgraduate School currently lacks the
facilities to conduct salt bath heat treatment, however,
this process was done by a private metals heat treating

contractor in the south San Francisco Bay area.

17
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The rods were austenitized (hardened) in salt baths
according to the following heat treatment scheme [Ref. 9]:
specimens were pre-heated in molten salt at 845°C (1553°F),
followed by austenitization in salt at a temperature between
1006°C (1843°F) and 1106°C (2023°F), using a standard
hardening holding time of five minutes. The samples were
then quickly transferred to a quench salt bath and held
there only long enough to attain bath temperature (stabilize),
but no more than two to three minutes, especially when the
salt bath was agitated. The test rods were then cooled
in air to room temperature.

Austenitization temperatures chosen, by material starting
condition, are shown in Table I. The hardening temperatures
were chosen according to data generated by Bres [Ref. 1].

The highest austenitizing temperature, 1106°C, is the
industry's standard, since it allows for complete solutioning
of all soluble carbides. By contrast, the lowest temperature,
1006°C, was selected--albeit arbitrarily--so that the effects
of undissolved soluble-type carbides could be observed in
rolling-element fatigu .. This latter austenitizing tempera-
ture, however, is st.ll high enough to give the material
sufficient hardness so as to perform adequately in a rolling
contact test. The intermediate temperatures, 1036 and 1066°C,
were employed at a later point in the research to investigate

the presence of retained austenite in the as-quenched

18
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Table 1

Austenitization Temperatures, by Material Starting Condition

Condition (Rolling Austenitizing
Temperature) Temperature

As-received 1006°C ot
As-received 1106°C
Warm-rolled (700°C) 1006°C
Warm-rolled (700°C) 1106°C
Warm-rolled (750°C) 1106°C
Warm-rolled (700°C) 1036°C
Warm-rolled (750°C) 1036°C
Warm-rolled (700°C) 1066°C
Warm-rolled (750°C) 1066°C
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specimens, evidenced by longitudinal cracking which occurred
upon tempering the warm-rolled rods austenitized at 1106°C.

The hardened rods were then subjected to a five-step
tempering cycle [Ref. 9], with each phase being two hours
long: freezing at -120°F (-84°C), tempering to 1000°F
(538°C), freezing, tempering,>and tempering again. The
specimens were permitted to return to room temperature
between phase of the tempering cycle. Freezing was
conducted to promote the transformation of retained
austenite to untempered martensite by pushing the material
below its martensite finish temperature. The actual
temperature was somewhat lower than prescribed: ~146°F
(-99°C). This was a result of the medium chosen in
whiph to freeze the specimens (acetone in liquid nitrogen),
although the lower temperatures had neither a beneficial nor
a detrimental effect. Acetone freezes at -140°F (-95°C),
while the temperature of liquid nitrogen is -320°F (—196°C).
Tempering itself was conducted in an electric box furnace
with automatic temperature control.

The rolling contact fatigue test rods were sent to the

Naval Air Propulsion Center (NAPC), Trenton, N.J., for

finish grinding. This removes the thin, decarburized
surface layer which inevitably results from an austeni-
tizing heat treatment (even in molten salt). The test
rods were given a surface finish of four to eight
microinches RMS.
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D. ROLLING CONTACT FATIGUE TESTIXNG

NAPC conducted rolling contact fatigue evaluation on
site. The rolling contact fatigue tester which was used
(Figure 2.1) is a simple device which generates fatigue
spalls that are similar to those occuring in actual rolling-
element bearings. Figure 2.2 shows a close-up of a test rod
mounted in a precision collet (similar to the chuck on a
lathe). The test rod is rotated by a small electric motor;
the rod in turn drives two hemispherically ground disks
which are rimmed with hardened M-50 steel. The hardness of
the roller material is comparable to that of the test rod,
and is surface finished to between eight and twelve
microinches BMS. These disks load against the test rod and
provide resistance (in the form of friction) to its rota-
tion. A drip feed system provides lubrication, which is
maintained at a constant rate of flow by a needle valve
assembly. The 1lubricant used in the test was MIL-L-23699, a
synthetic base-stock ester fluid which is the U.S. Navy's
standard lubricating oil for gas turbine engines. An
accelerometer is mounted on the load wheel yokes, acting
as a vibration pick-up which senses a test rod failure
(i.e., a fatigue spall) and subsequently stops the drive
system. A technician then records the number of stress

cycles until failure occurred and resets the rod on a

different track, ensuring a track separation of about
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Figure 2.1

Rolling Contact Fatigue Test Machine, Naval
Air Propulsion Center (NAPC), Trenton, N.d.
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0.125 inch (3.2 mm) in order to preclude interactions
between tracks [Ref. 10].
The following standard test conditions were observed
throughout the research:
(a) oil temperature--ambient;

(b) test rod temperature--ambient;

- (¢c) test rod rotating speed--35,000 to 36,000 rpm
. (583 to 600 rps);

m (d) applied load--1467.84 N (300 1bf);

! (e) maximum hertz stress--4.826 GPa (700 ksi); and

(f) lubricant flow rate--20 drops/min.

[; Testing on a track continued until failure by fatigue

' f spalling occurred, either on the test rod or the load disk
[Ref. 10]. 1In one case, however, the test was discontinued

[

due to an excessive number of stress cycles.

E. HARDNESS TESTING
EE Hardness data was ﬁaken on a Wilson Model 1-JR Rockwell

hardness tester. Samples were hardness-tested in the

Lottt

as-received and warm-rollea conditions at three points in

the heat treatment process (a) before hardening, (b) after

ot Fg ey
[ L

austenitizing but before tempering, and (c¢) after tempering.

The results of test (b) above are given in Table 1II, while

test data for (a) and (c) are reflected in Table III. The
Rockwell C scale and a diamond-cone Brale indenter were used
in the testing. Six readings were taken per sample, and an

arithmetic mean and standard deviation for the data were

24
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then calculated. Since the shape of the rolling contact

test rod is that of a cylinder, it was necessary to apply
a correction value for the workpiece; these corrections
were added to the Rockwell dial-gage readings, as hardness

was measured on the outer (convex) surface [Ref. 117.

F. MICROSCOPY

Specimens were cut from the test rods, mounted in
phenolic compound, and polished. Vilella's reagent (5 ml
HC1l, 1 g picric acid, and 100 ml 95% ethanol) was chosen as
the etchant because of its qualities for contrast etching in
untempered and tempered martensite [Ref. 12]. Initially, the
reagent was diluted with an equal quantity of 95% ethanol in
order to give more control during etching (i.e., to slow
down the reaction); etching times of twenty and thirty
seconds were used. Eventually, however, when greater
familiarity was gained with the etchant, undiluted Vilella's
reagent was utilized, with etching times from twelve to
fifteen seconds.

Optical microscopy was conducted under a Zeiss Universal
Photomicroscope using Kodak Panatomic-X 35 mm film (FX135-36),
ISO 32. Scanning electron microscopy was done on two
machines; a Hitachi S-450 SEM at the Hopkins Marine
Station, Pacific Grove, California; and, briefly, the Naval

Postgraduate School's Cambridge S4-10 Steroscan SEM.
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Polaroid Type 52 Polapan 4X5 land film, 400 ASA, was used

tj for all scanning electron photomicrography.
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III. RESULTS AND DISCUSSION

A. AS-RECEIVED VS. WARM-ROLLED MATERIAL

Before hardening, the microstructures of both the
as-received and warm-rolled products were examined using
both optical and scanning electron microscopy. Under the
optical microscope at 1270X, the as-received material
(Figure 3.1) shows well-defined grains and large,
irregularly-shaped insoluble (MC and M2C) carbides. These
larger residual carbides cannot be dissolved without melting
of the alloy. Soluble, or temper, carbides cannot be
resolved at this magnification. The dramatic effect on
grain size resulting from warm-rolling is seen in Figure 3.2:
the individual grain boundaries are no longer visible, though
the insoluble carbides retain their large, irregular
morphology. From this micrograph, it cannot be determined
whether any insoluble carbide refinement has been accom-
plished, although the rolling has caused these carbides to
appear as elongated "'bands'" within the matrix, parallel
to the rolling direction of the material. As with the
as-received material, temper carbides cannot be seen.

Under the scanning electron microscope at a magnifica-
tion of 6000X (Figure 3.3), the as-received material
exhibits the large, insoluble carbides and also the smaller
temper carbides. These latter, soluble carbides are

29
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Figure 3.1

As-Received Material (1270X)
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Figure 3.2 Warm-Rolled (700°C) Material (1270X)
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Figure 3.3 As-Received Material (6000X)
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spheroidized and homogeneously dispersed in the matrix. The
grain boundaries of the material are also observed as
contrasting light and dark areas within the matrix. Neither
the soluble nor the insoluble carbides ''respect'" the grain
boundaries of the material, as carbide nucleation appears to
favor no particular location.

Observe as well the small holes, or voids, at the ends
of the insoluble carbides. This is cavitation which is
presumably caused by the hot rolling of the steel into bar
stock when manufactured. This phenomenon was observed
(under the scanning electron microscope only) in virtually
every sample of this material, both before and after thermo-
mechanical processing, and regardless of the heat treatment
scheme followed. Since the voids exist ''in the §hadow” of
the insoluble carbides, their presence using optical micros-
copy was, understandably, not visible. It is thought that,
during the rolling, the insoluble carbides behave as hard,
undeformable particles in a relatively soft matrix. Thus,
cavitation occurs at the ends of these residual carbides,
analogous to the manner in which a high and low pressure
zone exists at the upstream and downstream ends, respec-
tively, of an obstruction in a flow stream. This is a
significant finding which may have important ramifications
with regard to the performance of M-50 steel in rolling-
element applications, a point emphasized below in the
discussion of the Weibull analysis.
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Figure 3.4 shows the warm-rolled material at the same
magnification (6000X), and there it is observed that the
soluble carbides clearly have been refined in size, although

there is no discernable effect upon the insoluble carbides.

The temper carbides again show a fine dispersion in the
matrix, with neither soluble nor insoluble carbides demon-
strating a proclivity to segregate. Areas of sharp grain
boundary definition are visible to a lesser extent due to
the obvious refinement of the grain size. These are repre-
sented by smaller areas of varying contrast in the struc-
ture. Cavitation is again observed, although it is less
pronounced than in the previous (as-received) specimens.
The results of the microscopy performed on the pre-
hardened material confirms the work done by Larson with
regard to thermomechanical processing of M-50 steel [Ref. 4]
with only one exception: the large residual carbides are
reduced in size only by a small amount, if at all. In both
the as-received and warm-rolled material, large insoluble
carbides could be found which were representative of the

carbide size throughout the structure. This, qualitatively,

makes the task of assessing their degree of refinement
- difficult if not impossible. Also, it stands in sharp
a contrast to the order-of-magnitude refinement produced on
the temper carbides in the warm-rolled matiix. Larson
concluded that this refinement was brought about by at least
? two factors. First, the dissolved carbides are precipitated
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as a fine temper carbide dispersion from a supersaturated
martensite. Secondly, recrystallization during the warm-
rolling provides nucleation sites for the enhancement of
precipitation. Also, deformation acts to shear larger
precipitates, reducing them in size to finer particles. The
efficacy of the warm-rolling in breaking up the hard, inso-
luble carbides, in light of the results of current optical
and scanning electron microscopy, is doubtful.

In addition, these results on M-50 regarding the refine-
ment of soluble carbides by thermomechanical processing also
supports the work by McNelley et al. [Ref. 13} on AISI 52100
steel. There, too, the starting structure (coarse spheroidal
carbides of the as-received condition) was refined during
the thermomechanical process. In 52100 steel, however, all
of the carbides could be driven into solution. The combina-
tion of heat treatment and warm working produced an ultra-
fine ferrite grain size with a homogeneous dispersion of

spheroidal (temper) carbides, and matches the results

obtained with M-50 except for the presence of the insoluble

3 (and apparently unrefineable) residual carbides in the latter.

1
ﬁl B. HARDENING EFFECT UPON STRUCTURE
E The hardening response of M-50 steel upon thermomechan-

F. ical processing was thoroughly documented by Bres [Ref. 1].

o This work, in part, showed that, up to a temperature of

approximately 1100°C (2012°F), the warm-rolled samples
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demonstrated higher hardness (Rockwell C) than did the

conventional, spheroidize-annealed (as-received) condition.
Beyond 1100°C, the two structures came together in terms of
hardness until they both experienced a slight softening
starting at about 1125°C (2057°F) (Figure 3.5).

The increase in hardness as a functidn of austenitizing
temperature is simply a reflection of the increasing quan-
tity of free carbon in the matrix as the carbides undergo
dissolution. The carbides in annealed M-30 have been found
to be M_,,C M.C, M2C, and MC [Ref. 6]. The first two,

2376’ "6
M,,C. and M.C, are soluble carbides whose solvus tempera-

2376 6
tures are 993°C (1820°F) and 1088°C (1990°F), respectively.
The remaining carbides,MZC and MC, are residual and cannot
be dissolved without causing liquation of the steel. It
can easily be seen that--up to the higher solvus temperature
(1100°C)--the soluble carbides are not yet completely
dissolved, and therefore hardness differences exist. Upocn
attainment of this temperature, however, no more carbon
is being taken into solution, and the two curves coincide.
The subsequent softening of both materials can be explained
both as a manifestation of increasing grain size with
temperature and the higher content of retained austenite in
the specimens [Ref. 14].

Additionally, Bres showed that, by holding austenitizing
temperature at a constant value (in this case, 1020°C

(1868°F)) and varying the heat treatment time from two to
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twenty minutes, the warm-rolled M-50 had a notably higher
hardness than the spheroidize-annealed sample for
austenitizing times up to five minutes. For the longer
austenitizing times (five minutes or greater), the two
conditions roughly equalized in hardness (Figure 3.6). The
fact that these two curves converge at the longer hardening
times is indicative of the speed at which the soluble
carbides are completely taken into solution when held at a
relatively high austenitizing temperature [Ref. 1].

Alternately stated, heat treatment (i.e., thermomechan-
ical processing) of the warm-rolled M-50 always vielded a
product that is at least as hard as the as-received
material. And, at either shorter austenitizing times or
lower austenitizing temperatures, the warm-rolled material
is significantly harder than the as-received steel given an
identical heat treatment.

Bres used test coupons of as-received and warm-rolled
M-50 steel which were, in both cases, about 2.5 mm (0.1
inch) thick; a standard austenitizing time of two minutes
was chosen. In the current work, the rolling contact test
rods were machined to a diameter of 0.375 inch (9.5 mm).
Since this was--at a maximum--approximately 3.8 times
the thickness of the coupon used in the previous study, a
standard austenitizing time of five minutes was arbitrarily
chosen, with the expectation that this holding time would

allow for complete through-huardening of the material upon
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austenitization. The hardness results for the as-received
and two warm-rolled conditions, heat treated at four
different temperatures, are given in Table II. These hard-
ness readings, taken on the Rockwell C scale, were obtained
before the material had been tempered. Hardness measurements
taken on samples of this material both before austenitizing

and also after hardening and tempering appear in Table III.

The remarkable similarity in the hardness data, espe-
cially between the lowest and highest austenitizing tempera-
tures, was not anticipated. Note that the minimum and

maximum hardness readings--63.0 and 65.9, respectively-- -3

o

differ by less than three Rockwell C numbers. The relatively "

[

e

high degree of statistical uncertainty evidenced by the

Lo

(large) computed values of the standard deviation leads one

to conclude that the hardness for all specimens is essen- f;
tially uniform, with only a slight softening observed at the f;
highest austenitizing temperature for each condition, most ;j

SR
DR ¢

likely a function of the increase in grain size and greater

amount of retained austenite. These data are also repre-

sented graphically in Figure 3.7, where the essentially

constant hardness--even with increased austenitizing "
temperature--is clearly seen. This is particularly true in 2;
the as-received and warm-rolled (700°C) conditions, Tﬁ
which show little scatter at the three lower temperatures. ii

Optical microscopy was consistent with the results of :F
the hardness testing above. Turning to the micrographs 2
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(1270X) of these material (Figure 3.8 through 3.11), one is
struck by the similarities of the microstructures rather
than by the differences. Figures 3.8 and 3.10 represent the
as-received and the warm-rolled (700°C) material, respec-
tively, at 1006°C. The two micrographs are nearly identical,
with no apparent distinction in grain size, amount of re-
tained austenite, or residual carbide size and dispersion.
Figures 3.9 and 3.11, depicting the same material condi-
tions at the highest austenitizing temperature employed
(1106°C), show the same characteristics. Though the
increase in grain size, particularly in the warm-rolled
material (Figure 3.11) is clear, as are the indications of
a higher degree of retained austenite (relative to Figures
3.8 and 3.10), the similarity of features is still the
dominant characteristic. Note also that in all four micro-
graphs there is no clear refinement of the insoluble
carbides. With such similarities between the microstructures,
it is not difficult to see why the hardness readings are
nearly identical as well.

A conclusion is unmistakable: five minutes at the
austenitizing temperature is simply too long a time, and has
resulted in coarsening of the rolled structure to the point

that it is little different from the as-received condition.

This nullifies the refinement resulting from the thermo-

!

[ mechanical processing, bringing both the microstructures and
|

[

e the hardnesses (which, of course, simply reflect the
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Figure 3.8 As-Received,
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1006°C (1270X)
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Figure 3.9 As-Received,
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microstructure) together. These results indicate that
future work in this study should be conducted using aus-
tenitizing times of shorter duration, and probably as
short as one to two minutes.

Comparing Tables II and 111, note also that there is
generally only a slight softening in the material (approxi-
mately five to eight Rockwell C numbers) with tempering. For
the two warm-rolled materials austenitized at 1106°C,
there is effectively no softening at all (one-half to one
Rockwell number). This result is due to secondary hardening,
a precipitation hardening resulting from fine temper
carbides which precipitate from solution during the
tempering cycle., This reaction is kinetically similar to the
hardening which occurs in heat-treatable aluminum alloys,
and counters the decrease in hardness which accompanies
tempering in low alloy steels. This illustrates the two
strengthening mechanisms in high speed tool steels:

(1) heating to and quenching from the austenitic region to
form a supersaturated, hardened martensitic matrix, and
(2) tempering to diffuse carbon and--more importantly--to
precipitate temper carbides for secondary hardness [Ref.

157.

C. MICROSCOPY OF HARDENED AND TEMPERED SPECIMENS
In preparation for rolling contact fatigue testing, the

specimens were subjected to the temper cycle documented
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above in chapter II. Figure 3.12 is a micrograph (1270X) of
c the as-received material which has been austenitized at
1006°C, while Figure 3.13 shows the same starting material
at an identical magnification, hardened at 1106°C. Though
not immediately clear from the micrographs, there has been
a slight increase in grain size with the higher temperature.
Figures 3.14 and 3.15 show the warm-rolled material (700°C)

austenitized at 1006 and 1106°C, respectively. Distinct

) o~ ff

grain size refinement 1s observed in the warm-rolled
material (Figure 3.14) over the as-received condition
(Figure 3.12) at the same hardening temperature. Com-
paring the warm-rolled material at the different tempera-
-”f tures, a marked jump in grain size is noted with the

f . higher austenitizing temperature here as well.

Note that there has been no appreciable refinement in
the size of the insoluble, residual carbides from Figures
55 3.12 and 3.13 (as-received) to Figures 3.14 and 3.15 (warm-
- rolled); neither do these residual carbides appear to have

been "broken up" by the warm-rolling process. Bear in mind
; that this conclusion has been established by a careful,
gualitative scan over the entire specimen surface at each
condition, not just through the field of view of one micro-
.' graph. At no point in this research, in fact, has there ever
been any clear and convincing evidence of insoluble carbide
refinement with thermomechanical processing. Their persis-

Y tence even after heat treatment and warm-rolling lends
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. Figure 3.12 As-Received Material, 1006°C (1270X)

. 50




i PP TT TR R L W T AR g X A - T EAARSAENEN R
] |
S |
» K ‘
- |
‘ |
|
: 1
- i

v

1.

. Figure 3.13 As-Received Material, 1106°C (1270X)
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Figure 3.14 Warm-Rolled (700°C), 1006°C (1270X)
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Figure 3.15 Warm-Rolled (700°C), 1106°C (1270X)




T T T e T )

. R . .
LT e ., R . . . - . A . n
e A A e P aMata ma”al PSPPI, N S, BP0 S S Ry . .

support to the belief that their refinement in this steel
may not be possible by thermomechanical processing.

Under the scanning electron microscope, the morphologies
looked quite similar. Figure 3.16 offers two views of resi-
dual carbides taken at the same magnification (6000X) in the
as-received material hardened at 1006°C. Note the irregular
features of the massive, insoluble carbides and also the
cavitation existing at points on their surfaces. Observe
also the homogeneous dispersion of the spheroidized
temper carbides in the matrix, as well as the fine,
randomly-oriented martensite needles which can be clearly

resolved at this magnification.

D. ROLLING CONTACT FATIGUE TESTING

As a consequence of longitudinal cracking which occurred
during the tempering cycle (detailed below in section F),
only four test rods were available for rolling contact eval-
uation. All four rods tested in rolling contact by NAPC
evidenced failure by classical fatigue spalling [Ref. 2].
As an example of this, wear tracks and spalls for the two
as-received conditions are shown in Figure 3.17. Spalls
varied in length from less than one up to several millime-
ters, although they were all about 1 mm wide, the~tbickness
of the wear track; fatigue spalls evidenced no character-
istic shape. There was no correlation between spall size or

shape and the condition being tested; in other words, spalls
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Figure 3.17 Rolling Contact Test Rods, As-Received: 1106°C
(Top), 1006°C (Middle)
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produced in the as-received material showed no difference in
appearance from those occurring on the warm-rolled stock,
and vice versa.

The exterior surface of a spall on the as-received
material hardened at 1006°C is pictured in Figure 3.18.
These two photographs were taken of the same fatigue
spall under the scanning electron microscope at a magnifica-
tion of 90X. In the second micrograph, however, the specimen
was tilted at an angle of fifteen degrees relative to its
previous position. The result constitutes a '"stereo pair,"
and gives a remarkable three-dimensional effect when seen
under a stereo viewer. One is struck by the extent of
plastic deformation evident with the spalling action, and by
"stretch marks'" observed on the surface of the rod showing
the direction of the fatigue.

Using optical microscopy, the microstructure below the
surface of the spall was examined. The test rods were
sectioned longitudinally, so that both the center of the
spall and the direction of rolling (evidenced by strings of
insoluble carbides) were revealed. Figures 3.19 and 3.20
(406X) depict failures which occurred in the as-received and
the warm-rolled (700°C) material, hardened at 1106 and
1006°C, respectively. In neither case was there any
obvious interaction between the residual carbides and

the cracking which can be observed around the spall, nor was
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Figure 3.19 Sectioned Fatigue Spall: As-Received Material,
%' Austenitized at 1106°C (406X)




AR A D it S e ™ e 20t s e St "R M B it P L TR R e T e TTTTTTTN———" T T—————

-----

Figure 3.20 Sectioned Fatigue Spall: Warm-Rolled (700°C)
Material, Austenitized at 1006°C (406X)
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any association seen with the as-received material which had
been austenitized at 1106°C (not pictured).

Under the scanning electron microscope, the same speci-
mens were examined again for demonstration of residual
carbide interaction. In particular, any apparent coinci-
dence between the insoluble carbides and the start of
subsurface cracking (i.e., fatigue spall initiation) was
sought. Figure 3.21 reveals a crack on the edge of a spall
in the as-received material, austenitized at 1006°C.

The micrograph, at 3000X, exhibits carbides which appear to
be caught in the path of the crack and were themselves

broken up. The corona which outlines the edge of the spall
in this photograph is a result of electron charging of the
metallographic sample. Observe also that temper carbides can
be resolved at this magnification. 1In Figure 3.22, the
apparent origin of another crack in the same material is
shown at a higher magnification (6000X). Here, the same
phenomenon is seen: that of a fatigue crack originating in
the matrix and propagating through a carbide to the surface

of the rod, eventually resulting in a spall. Note the

fissure pattern in the carbide itself, revealing the direc-

tion of crack growth and travel to be from the interior of

the specimen to its surface. Again, however, the insoluble

i carbide appears simply to have been an obstacle, rather than
E: an initiator, for the crack. Another micrograph taken of
? the same sample, Figure 3.23, shows fatigue-induced cracks
o
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Figure 3.21 Sectioned Fatigue Spall:

Material, Austenitized at

As-Received
1006°C (3000X)

Figure 3.22 As-Received

Sectioned Fatigue Spall:
Material, Austenitized at 1006°C (6000X)

62

e e A e e R

I S - S R R P .

-.'-.‘.-.1




- e -y Y Y v
.. s W W A ' Sy et el i i Mot Aot ~ Sl St el e et et Mhath Malin & o ”
cln e ) - W W e . L - > . Wt T e At
~
[
)
-
.

P

2
!

.t

L

IO Eatince PN
N . _

YTV

Y
’

T Te— -
. cam -

s

Figure 3.23

Sectioned Fatigue Spall: As-Received
Material, Austenitized at 1006°C (1500X)
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which have formed immediately beneath the area where the
spall eventually occurred. These cracks (shown at 1500X)
developed in the matrix amidst a relatively homogeneous

dispersion of both residual and temper carbides, but do not

appear to have been affected (or determined) by the presence
of these carbides. This pattern is exhibited in the other
conditions as well. As-received material hardened at

1106°C is shown in Figure 3.24 (3000X), and depicts

subsurface cracking in the spall region which is also appar-

ently unaffected by the insoluble carbides.
= — It must be noted, however, that these cracks do not
necessarily represent the main crack front which resulted in

the fatigue spall. Instead, they constitute additional, or

secondary, cracking which has occurred beneath the spall,
the evidence of the main cracking having been carrried away
with the metallic remnants which comprised the spall itself.
With this fact borne in mind, microscopy of failed M-50
steel specimens still yields no evidence that these secon-
dary cracks have nucleated within the insoluble carbides
themselves; neither does this fatigue-induced cracking
appear to be initiated or influenced by the presence of the

residual carbides within the substructure.

E. WEIBULL ANALYSIS

The plots generated from the Weibull function are shown

as Figures 3.25 through 3.28. A complete description of the

.
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Austenitized at 1106°C (3000X)

Figure 3.24 Sectioned Fatigue Spall: As-Received Material,
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Weibull analysis is given by Johnson in Reference 16. The
empirical data used to produce these graphs are given in
Appendix A, which also includes supplementary calculations
such as the Weibull slopes, characteristic lives, and

correlation coefficients. The bar codes listed in Appendix

A correspond to the following material processing conditions:

A-1 As-received, 1006°C
F-2 As-received, 1106°C
K-3 Warm-rolled (700°C), 1006°C
N-2 Warm-rolled (750°C), 1036°C

For each test rod, discrete points representing the
number of cycles to failure and the "median rank" of each
failure determination (i.e., a cumulative distribution, from
zero to one hundred percent, which indicates how many fail-
ures have occurred) were plotted. Then, a linear regression
(least squares) analysis was performed, and the resultant
"best-fitting" straight line for these points was overlaid
on the graph.

Figure 3.25 shows all four test rods/conditions on a
Weibull plot. Noteworthy is the fact that there are no vast
differences in rolling contact fatigue life among the test
conditions. The Weibull slopes for three of four rods are
essentially equal, while the slope for the warm-rolled
(700°C) material austenitized at 1006°C is inexplicably
(and perhaps insignificantly) higher. Allowing for
statistical scatter and the relatively small number of tests
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run per sample, the results demonstrate virtual equivalence.
This is particularly significant (and reasonable) in light
of the similarities in microstructure and hardness which
have already been documented for this material. Therefore,
one must conclude that, for the heat treatments here with a
five-minute austenitizing time, there appears to be no
dependence of rolling contact fatigue behavior on prior
processing history. Further testing in rolling contact
fatigue must be conducted on materials which have been heat
treated for shorter holding times. As noted previously, this
may facilitate determination of the effects of microstruc-
tural refinement, assuming such refinement is better
retained at the shorter austenitizing times.

However, neither can the effect of voids associated with
the insoluble carbides be neglected. It is quite possible
that, regardless of the microstructural enhancement gained
by thermomechanical processing, cavitation is the con-
trolling feature which determines the fatigue life of
rolling elements fabricated from M-50 steel. If these voids
act as stress raisers in the matrix, they would have the
same propensity to act as sites for crack nucleation in the
substructure as porosity or oxide inclusions. This condition
effectively nullifies the benefits gained by VIM-VAR
processing during manufacture of the steel, accomplished

that these impurities might be removed [Ref. 17].
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Because the intricacy of Figure 3.25 makes it difficult
to read, three additional plots were generated using the
same data. Figure 3.26 compares the two as-received condi-
tions. There it 1s observed that the material heat treated
at the higher temperature clearly demonstrates a superior
resistance to rolling contact fatigue. The mean 1life of the
as-received material austenitized at 1006°C is 33.66

million cycles (Appendix A), compared with 45.81 million

cycles for the same material hardened at 1106°C, an
increase in average fatigue life of 36.1 percent. One would
predict a greater resistance to rolling contact fatigue for

the latter material simply on the basis that, at the higher

v
. * ,! .
S " PO -

austenitizing temperature, more carbides are dissolved and

hence more carbon is taken into solufion, yvielding a harder
microstructure. In reality, however, Rockwell readings for
these materials, found in Table III, show that they are
effectively identical in hardness, taking the standard devi-
ation of the readings into account. So, even with an obvi-
ously inferior (larger) grain size, the as-received material
austenitized at the higher temperature delivers a signifi-
cantly better response in rolling contact testing.

The results from the as-received and warm-rolled (700°C)

test rods, both austenitized at 1006°C, are shown in Figure
f 2.27. The data are very similar at the lower percentages
f; of failure, but the as-received material outperformed the
warm-rolled stock as the testing continued. The mean life
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of the warm-rolled material (17.80 milliion cvcles) was

47.1 percent less than the as-received condition (33.6
million cycles). Although one must be careful when
attempting to extrapolate conclusions, given the nature of
the statistical data and the reasons outlined above, the
analysis still points to the fact that at least the warm-
rolled material is no better than the as-received condition
in terms of rolling contact fatigue performance. And, if
carbide size and dispersion are, as has been postulated
[Refs. 18-20], the dominant factors (vice mere refinement
of the matrix) affecting rolling contact fatigue 1life, then
the Weibull analysis alone--microscopy aside--strongly
suggests that the insoluble carbides have not been refined
by thermomechanical processing.

Figure 3.28, a comparison of the as-received material
hardened at 1106°C and the warm-rolled (700°C) material
austenitized at 1006°C, shows the as-received material to
be superior to the warm-rolled condition by an approximate
factor of two. This serves only to amplify the conclusions

of the previous two plots and provides no new information.

F. EFFECTS OF RETAINED AUSTENITE

Rolling contact test specimens which had been warm-
rolled and then subjected to the higher hardening tempera-
ture (1106°C) experienced longitudinal cracking during the

post-austenitizing tempering cycle. This result led to an
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investigation into the amount of stable austenite which was
retained at room temperature after heat treatment. Subse-
quently, additional samples were austenitized at ‘"'mid-range"
tcmperatures of 1036 and 1066°C, in order to determine if a
critical temperature could be established, beyond which no
more cracking occurred. These test rods were examined
carefully after hardening and found to be free from surface
cracks. After the first tempering cycle (i.e., two hours

of freezing followed by two hours of tempering), however,

all samples exhibited longitudinal cracking as before.

These cracks generally traversed the entire axial length
of the test rod (about four inches) and penetrated to a
range of depths, from less than 1 mm below the surface to
the entire 0.375 inch (9.5 mm) diameter of the rod. An
example of this extensive cracking is shown in Figure 3.29,
which exhibits a sample of the warm-rolled (750°C) material,
austenitized at 1066°C, mounted in phenolic compound and
polished.

At first it was assumed that these cracks were the
result of too rapid a quench from the austenitizing tempera-
ture. This idea of severity of gquench was discarded,

however, when further thought was given to the actual heat

treatment (i.e., stabilization of the test rod in molten

[

- salt following austenitization, then air cooling to room
temperature), which gave sufficient time for residual
stresses to be accommodated in the material., Instead, it was
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Figure 3.29 Longitudinal Cracking (Cross-Section): Warm-
Rolled (750°C) Material, Austenitized at 1066°C
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reasoned that the cracking must have resulted from the
tempering treatment which followed hardening. Specifically,
it was thought to occur during the first freezing cycle,
when it was suggested that large quantities of retained
austenite transformed to untempered martensite. This would
be accompanied by an unfavorable volume change due to the
lattice transformation from a face-centered cubic (FCC)

crystal structure to a body-centered tetragonal (BCT) struc-

ture, which in turn would lead to cracking.

This hypothesis was confirmed by optical microscopy.
Figure 3.30 (the same specimen shown in Figure 3.29), shown
[ at a magnification of 1016X, depicts the intersection of a
: crack with the surface of the test rod. A shallow decarour-

ized layer can be seen at the rod surface, a common defect
P which occurs during austenitizing (final grinding removes
L .

this layer before commencing the rolling contact fatigue

[ - test). Decarburization is not evident in the crack,

Eﬂ however, indicating that the fissure had not yet been opened
E during hardening. This result confirms the post-

[ austenitization examination of the rolling contact specimens

which found them to be crack-free. Figure 3.30 also reveals

fﬁ that both the rod surface and the crack interior show

A evidence of oxidation, such as would occur upon tempering.
f

p:- Thus, one concludes that cracking took place after austeni-
&; tizing but before tempering: i.e., during the deep-freeze

phase of treatment.
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o Figure 3.30 Warm-Rolled (750°C) Material, Austenitized at
‘ 1066°C (1016X) )
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Retained austenite has been documented in the metallur-
gical literature as having a deleterious effect upon rolling
contact fatigue life [Refs. 21 and 22]. Apart from austenite
being a softer phase than martensite, there is always the
danger that stresses generated in-service can activate a
transformation to martensite. This will lead to volume and
possibly shape changes (due to the change in lattice struc-
ture). Also, the presence of a local residual stresses
could also assist in the initiation of fatigue cracking,
decreasing the life of the component [Ref. 22]7.

Complete elimination of retained austenite is not
possible, but a combination of freezing and tempering should
reduce it to an acceptable minimum in the material [Ref.
22]. The deep-freeze, of course, brings the metal below the
martensite finish temperature, which has been lowered due to
extensive alloying (éuch as in M-50 steel), and induces the
martensitic transformation. Although the standard heat
treatment of austenitized M-50 steel includes these deep-
freezing and tempering cycles, recent discussions with a
bearings metallurgist indicates that the trend in the
industry is now away from the freezing phase, presumably
because of the harsh thermal gradients th}s procedure
imposes on a material. Instead, a heat treatment scheme
which consists of austenitization followed by multiple
tempers is currently being employed {[Ref. 23]. Tempering
alone at an elevated (though sub-critical) temperature will
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also result in the reduction of retained austenite. As
carbon diffuses from its interstitial location in the BCT
(martensitic) crystal structure, it acts as a ferrite stabi-
lizer, raising the martensite start and finish temperatures;
this enables the retained austenite to more completely
transform to martensite at a higher temperature.

To qualitatively investigate the presence of retained
austenite in the hardened steel, twelve new specimens, all
of them approximately one inch (25.4 mm) long and 0.375
inches (9.5 mm) in diameter, were prepared. Each of the
three materials (the as-received stock and the two warm-
rolled conditions) was subjected to four different austeni-
tizing temperatures: 1006, 1036, 1066, and 1106°C.

Samples were left in the as-hardened state (i.e., no
tempering treatment was applied). From this experiment, a
marked increase in the amount of retained austenite with
increasing austenitizing temperature was observed. Compare
Figure 3.8 to Figure 3.9 (as-received) and 3.10 to 3.11
(warm-rolled at 700°C) to see the higher retained austenite
content resulting from a heat treatment temperature increase
from 1006 to 1106°C, respectively. This is evidenced by

the numerous white patches of retained austenite which are
exhibited throughout the matrix in Figures 3.9 and 3.11, and
is due to the greater amount of carbon (from soluble car-
bides) taken into solution as hardening temperature is
raised. Since the solvus of the most tenacious soluble
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carbide is just below 1100°C, one would not expect to see

a still further increase in the amount of retained austenite
with elevated austenitizing temperatures.

As could be anticipated, the degree of cracking was most
severe at the higher austenitizing temperatures; this was a
result of more carbon being driven into solution, which
therefore led to more retained austenite. Cracking existed
in the rolling contact test rods themselves only in the
warm-rolled material, and was--as expected--more extensive
in those specimens austenitized at 1106 and 1066°C,
although the rods hardened at 1036°C also exhibited somewhat
shallow axial cracking. In the shorter specimens prepared
for the retained austenite investigation, however, cracking
occurred in all three conditions only at the highest (1106°C)
austenitizing temperature, and also in the as-received
material hardened at 1066°C. This latter phenomenon,
in light of the previous result in the test rods, defies
explanation at present.

Since this investigation was merely qualitative in
nature, and rather superficial at that, no assessment was
made of the actual percentage of stable austenite which was
retained in the material following the hardening heat treat-
ment. It will be an important aspect of future reseach in
this area to determine, using quantitative x-ray diffraction
methods, the amount of retained austenite which remains
following the various austenitizations, both before and
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after the tempering cycle, so as to gain a clear under-
standing of its impact on rolling contact fatigue life.
Under the optical microscope, the crack propagation path
through the steel was studied. It is noted in passing that
the cracks appeared to traverse transgranularly across the
specimens. Figure 3.31, however, which shows warm-rolled
material (700°C) austenitized at 1106°C (magnification:
813X), reveals 1in intergranular propagation path. Using
scanning electron microscopy at a magnification of 440X,
the fracture surface itself (Figure 3.32) exhibits
an appearance reminiscent of grain boundary facets (''rock
candy'"). Although there is a fairly uniform overlay of
oxidation products, the surface displays a pattern of
rounded, small angle tilts and no clear evidence of plastic
deformation, and is thus characteristic of brittle inter-

granular fracture [Ref. 24].
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Figure 3.31

Intergranular Cracking:
Material, Austenitized
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Warm-Rolled (700°C)
at 1106°C (813X)
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Figure 3.32 Fracture Surface of Warm-Rolled (700°C) Ma-
terial, Austenitized at 1106°C (440X)
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IV. COMMENTARY AND CONCLUSIONS

Thermomechanical processing of M-50 steel has been
effective in two areas: (1) refinement of the matrix fer-

rite grain size in the microstructure, and (2) yielding a

fine, homogeneous dispersion of soluble (temper) carbides in
that matrix. It has failed to refine, except to a minor
extent, the insoluble (residual) carbides MC and M2C. It

has previously been stated that the dominant factor in

- in."

enhancement of rolling contact fatigue life is believed to

ToT

be the effect of carbide size and dispersion [Refs. 18-20].

There is sufficient evidence in the literature to adequately

-

support this conclusion.

First, rolling contact fatigue testing performed on
carbide-refined AISI 52100 steel showed that fatigue life
improvements on the order of a factor of three have been
achieved [Ref. 25]. Recall that this is a steel for which
all of the carbides may be driven into solution, resulting
in a fine-scale, homogeneous matrix. Secondly, the effect
of ausforming on M-50 steel has substantially improved the
fatigue lives of balls and bearings in rolling contact
[Refs. 26 and 27]. With this technique, a uniform disper-
sion of small carbides is achieved, thereby lessening the
severity of dislocation pile-ups which act as stress con-
centrators and, ergo, sites for crack nucleation. Although
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Ei one may justifiably call into question the degree of refine-
E ment of the insoluble carbides attained by this method, as
documented in Reference 26, the fact remains that there is
E' convincing association between residual carbide refinement
i and an increase in effective bearing life. Third, it has
t been shown that a crystallized glass ceramic approximates
to a very high degree the properties of a carbide-refined
bearing steel, in that the ceramic has very small crystals

which are both evenly dispersed and randomly oriented within
a matrix, in a manner analogous to the carbides in M-50
steel [Refs. 28 and 29]. This ceramic material exhibited
longer fatigue life when the crystals were smaller and more
closely spaced. The researcher proposed two reasons why

this occurred: (1) the crystals (or carbides in a bearing

steel) would tend to block the formation of longer cracks by
acting as an inhibitor to crack propagation, and (2) the
crystals or carbides would strengthen the area of resolved

shearing stress more if they were close together than if

.frﬁﬂv"."‘

they were widely separated, thus retarding crack initiation

REEBINEA I Sy

[Ref. 28].
The preceeding discussion all suggests that the thermo-
mechanical processing employed here is unable to refine the

insoluble carbides and may therefore be of no use in gaining

an enhancement of rolling contact fatigue resistance in M-50

A elaf

steel. There are two critical experiments necessary to

(3

~TW,

confirm this, however. First, shorter austenitizing times

——
-—

P

85

Tt

-

p

. Lt e P I Coe . . e e

b e T S . . e e - ST e, o . T,
. L. - . R L . . A -

-." N '-A» R T - -"'- - te » 0 . . YL T e Tt e™ ‘.-‘ - .t
LA.A. P P DA P WY N S SO o P PSS TR PGPV LS S Y ORI N LIPS WS- WY




must be investigated, to see if matrix refinement produced
by thermomechanical processing can be retained during
austenitization and effect an enhancement of rolling contact
fatigue life. Second, an experiment should be structured
which removes (closes up) the voids present in these
materials. A method such as hot isostatic pressing (HIP),
used in processing of powder metallurgy, or another appro-
priate technique could be employed for this purpose. This
would determine the extent to which the cavitation is
relevant to the rolling contact fatigue behavior of this
steel.

The conclusions relating to this research into the
rolling contact fatigue life of thermomechanically processed
M-50 steel are summarized as follows:

1. Thermomechanical processing has resulted in the .
significant refinement of both the ferrite grain size
and the soluble (temper) carbides.

2. Thermomechanical processing has failed to yield

any more than a minor refinement of the insoluble

(residual) carbides, which occur as MC and MZC in

M-50 steel.

3. The hardness of all specimens hardened with a
five-minute holding time is fundamentally constant,
with only a slight softening observed at the

highest austenitizing temperature.
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4. The five-minute austenitization time is too long
for the small size of the test materials used, and
results in an undesirable homogenization with respect
to both microstructure and hardness.

5. There was no correlation between surface fatigue
spall size or shape and the heat treatment condition
under evaluation.

6. Optical and scanning electron microscopy of failed
specimens yields no evidence that secondary stress
cracking has nucleated within the insoluble carbides;
neither does fatigue-induced cracking appear to be
initiated or influenced by the presence of residual
carbides in the substructure. Evidence of such
interaction, however, is strongly alluded to in the
literature.

7. Weibull analysis demonstrates the essential equiva-
lence of the results of the rolling contact fatigue
testing. With a five-minute austenitizing time,
there appears to be no dependence of rolling contact
fatigue behavior on prior processing history.

8. The thermomechanically processed material is not
better than the as-received condition in terms of
rolling contact fatigue performance.

9. Longitudinal cracks occurring the specimens
following austenitization are the result of exces-

sive retained austenite which transforms to
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unt =2mpered martensite during the deep-freeze
phase of the tempering cycle.

10. The extent of axial cracking is more severe at the
higher austenitizing temperatures. This is due
to the fact that more carbon is being taken into
solution with the elevated temperature, which in
turn results in greater quantities of retained

austenite.
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V. RECOMMENDATIONS FOR FUTURE WORK

The following recommendations constitute additional

research opportunities in this area:

1.

B G S P A SR DN
. ROV I Y ‘;_! _’A‘[A.I_.._.'_‘l-'.._&.“ 114“'&1'4"‘1‘ >

Conduct rolling contact fatigue testing on

specimens subjected to different thermomechanical

processing conditions and austenitized at hardening

holding times of less than five minutes.

Remove existing cavitation through hot isostatic
pressing (HIP) and test these specimens in
rolling-element fatigue.

Determine quantitatively, using x-ray diffraction
methods, the amount of retained austenite which
remains following heat treatment at various
austenitizing temperatures.

Investigate exhaustively the relationship between
insoluble carbides in the substructure and the
initiation of interior stress cracking which

leads to failure by fatigue spalling
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